Paper Reading on Pose Detection
- Pose Estimation Using A deconvolution Head network
- obtaining high resolution feature maps is crucial, but no matter how
- Pose Tracking
- human detector
- optical flow
- greedy matching
- flow-based pose similarity metric
- Joint Propagation Using optical flow
- motion blur
- (x+δx,y+δy)
- Flow-based Pose similarity
- SFlow(Jik,Jjl)=OKS(J^il,Jjl)
- depthwise separable convolutions
- a layer for filtering, a layer for combining
- DK⋅DK⋅M⋅N⋅DF⋅DFDK⋅DK⋅M⋅DF⋅DF+M⋅N⋅DF⋅DF=N1+DK21
- Width multiplier & resolution multiplier
- inverted residual with linear bottleneck